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The solvation model proposed by Fattebert and Gygi [J. Comput. Chem. 23, 662 (2002)] and Scherlis
et al. [J. Chem. Phys. 124, 074103 (2006)] is reformulated, overcoming some of the numerical lim-
itations encountered and extending its range of applicability. We first recast the problem in terms of
induced polarization charges that act as a direct mapping of the self-consistent continuum dielectric;
this allows to define a functional form for the dielectric that is well behaved both in the high-density
region of the nuclear charges and in the low-density region where the electronic wavefunctions de-
cay into the solvent. Second, we outline an iterative procedure to solve the Poisson equation for the
quantum fragment embedded in the solvent that does not require multigrid algorithms, is trivially
parallel, and can be applied to any Bravais crystallographic system. Last, we capture some of the
non-electrostatic or cavitation terms via a combined use of the quantum volume and quantum sur-
face [M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, Phys. Rev. Lett. 94, 145501 (2005)] of
the solute. The resulting self-consistent continuum solvation model provides a very effective and
compact fit of computational and experimental data, whereby the static dielectric constant of the
solvent and one parameter allow to fit the electrostatic energy provided by the polarizable contin-
uum model with a mean absolute error of 0.3 kcal/mol on a set of 240 neutral solutes. Two pa-
rameters allow to fit experimental solvation energies on the same set with a mean absolute error of
1.3 kcal/mol. A detailed analysis of these results, broken down along different classes of chemi-
cal compounds, shows that several classes of organic compounds display very high accuracy, with
solvation energies in error of 0.3-0.4 kcal/mol, whereby larger discrepancies are mostly limited to
self-dissociating species and strong hydrogen-bond-forming compounds. © 2012 American Institute
of Physics. [doi:10.1063/1.3676407]

I. INTRODUCTION

Continuum solvation models have proved to be very ef-
fective in capturing the complexity of a solvent in an implicit
fashion.4–7 Even if one could argue that an explicit descrip-
tion of the solvent would be a more faithful representation
of the real system, an explicit solvent would require exten-
sive molecular dynamics (MD) simulations in order to ob-
tain meaningful thermodynamic averages. In addition, even if
these were computationally feasible, an ab initio density func-
tional theory (DFT) description of the solvent would rarely
provide the correct results due to the limitations in the accu-
racy of the functionals adopted. Critical limitations in the rep-
resentation of the structure of liquid water with DFT are well
known in the literature,8–12 and can be related to the lack of
a proper description of van der Waals interactions and hydro-
gen bonds in standard DFT. Moreover, given the presence of
hydrogen atoms in liquid water, neglecting the quantum mo-
tion of the nuclei of the system could significantly affect the
computed physical properties of the system.13–15 The above

a)Electronic mail: oliviero.andreussi@epfl.ch.
b)Electronic mail: daboi@cermics.enpc.fr.
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limitations in the DFT description of liquid water translate
into phase diagrams that differ from the experimental one, and
melting temperatures that are much larger than the experimen-
tal temperature.11, 12 Being unable to accurately describe the
structure and the dynamics of liquid water, it is questionable
whether the most popular DFT functionals could correctly re-
produce its dielectric behavior. As a typical dipolar liquid,
the dielectric properties of liquid water derive from the elec-
tric dipole moment carried by the individual molecules. Even
though much effort has been put in the characterization of
the dipole moment of water in its liquid state, a consensus on
the subject is still lacking.16–18 Moreover, it was shown in the
literature18 that the dielectric response of water is dominated
by the short range effects of the hydrogen bond environment,
thus implying that the lack of accuracy in the description of
intermolecular interactions in liquid water could lead to a poor
characterization of its dielectric properties.

Many continuum solvation models have been proposed
and widely developed,4–7 especially in the chemistry litera-
ture, since the earliest work of Onsager.19 Among these many
approaches, one of the most popular is the polarizable contin-
uum model (PCM) of Tomasi and co-workers4, 7 that, in its
latest formulation in terms of integral equations (IEF),20, 21
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encompasses a wide range of similar methods (e.g., the
COSMO approach22). Being mostly linked to the chemistry
community, PCM has not been used in condensed matter and
solid state simulations. In particular, the possibility to deal
with metallic systems within PCM was introduced only later
in an implicit way,23 and the algorithm was not really devel-
oped to be interfaced with periodic systems and ab initio MD
simulations.

In an effort to extend solvation methods to plane-wave,
periodic-boundary codes, and ab initio MD, Fattebert and
Gygi proposed a new model of continuum solvation,1, 24

where the dielectric is defined as a smooth self-consistent
function of the electronic density of the solute. This model
was further extended by Scherlis et al.2 to include the calcu-
lation of the cavitation energy, by defining it in terms of the
quantum surface of the solute.3 Despite the simple and ele-
gant formulation of the model, some ill-conditioning of the
problem in its original formulation led to abandoning or re-
laxing self-consistency:25 models in which the dielectric is
defined in terms of a fictitious, atom-centered electronic den-
sity have been proposed,26 together with approaches were the
electronic density of the solute precomputed in vacuum is
adopted to define the continuum solvent. In addition, all of the
reported implementations and derivations of the Fattebert and
Gygi method (e.g., Refs. 2 and 25) rely on multigrid solvers,
which entail high-order discretization of the Laplacian oper-
ator and that typically adopt Cartesian geometries and serial
implementations.

In the present work, starting from the model of Fatte-
bert and Gygi, a revised self-consistent continuum solvation
(SCCS) model is derived, in which the challenges outlined
above are tackled as follows. First, along the lines of PCM,7

the method is re-implemented in terms of polarization charges
and solved using an iterative approach that is intrinsically par-
allel, extendable to any kind of Bravais lattice, and straightfor-
wardly transferable into any plane-wave code. Second, some
of the numerical instabilities of the original formulation1, 24

are solved by properly redefining the relation between the di-
electric and the electronic density of the solute. Third, the
model features a revised version of the extension of Scherlis
et al.2, 3 to treat the cavitation contribution to solvation free
energies, where the concepts of quantum surfaces and quan-
tum volumes3 have been extended to model dispersion and
repulsion effects in a simplified way.

The accuracy of the proposed method has been tested on
a reference sample of 240 neutral solutes in water. Its abil-
ity to accurately reproduce with only one fitting parameter
PCM results provides a strong validation of the method and
allows its extension to reproduce experimental solvation en-
ergies. The resulting agreement with experiments has a mean
absolute error of 1.3 kcal/mol when two fitting parameters
are used. Moreover, an analysis of the error as a function of
the functional groups of the solutes provides some critical in-
sights into potential limitations of the model. In particular,
results for several classes of organic compounds present very
high accuracies (with errors on the order of 0.3–0.4 kcal/mol),
and discrepancies are mostly limited to chemical compounds
that undergo dissociation in water, such as carboxylic acids
and amines. Significant errors are also found for some strong

hydrogen-bond-forming species, such as ethers, alcohols, and
fluorinated compounds. These findings suggest that an exten-
sion of the model that takes into account self-dissociation or
a shell of explicit water molecules around the solute could
provide results in quantitative agreement with experiment.

The paper is organized as follows. In Sec. II, the main
features of previous continuum solvation methods are re-
viewed. In Sec. III, the basic equations of the electrostatic
part of the proposed method are presented. In Sec. IV, some
limitations of previous models are discussed and a new defi-
nition of the dielectric function that solves most of these lim-
itations is presented. In Sec. V, a new numerical approach
is discussed, based on an iterative solution of the dielectric
problem, alternative of and simpler than multigrid solvers. In
Sec. VI, complementary non-electrostatic contributions to
solvation are introduced. Eventually, in Sec. VII parametriza-
tions of the model and a comparison with theoretical results
from similar well-assessed techniques are reported.

II. PREVIOUS APPROACHES

The most widespread continuum solvation method is the
polarizable continuum model by Tomasi and co-workers7

that, in its formulation in terms of integral equations,20, 21 rep-
resents the most general approach to continuum solvation.
The basic physical picture behind the model is one of a solute
contained in an ad hoc cavity surrounded by a continuous po-
larizable dielectric, whose response to the solute charge distri-
bution is fully characterized by the value of its static dielectric
constant ε0. In this model, the transition between the vacuum
region inside the solute cavity and the surrounding dielectric
continuum is sharp and discontinuous. This discontinuity al-
lows to treat the effect of the surrounding environment on the
solute through introducing a polarization charge density that
is exactly localized at the vacuum-dielectric interface. In ad-
dition to homogeneous isotropic dielectrics, a suitable surface
charge density can be defined via integral equations also in
complex embedding environments that include multiple in-
terfaces and metallic systems. Thus, by representing the re-
sponse of the environment in terms of an effective surface
polarization density, IEF-PCM reduces a three-dimensional
problem into a two-dimensional one. Numerically, IEF-PCM
adopts a boundary element method to discretize the surface
of the molecular cavity and the operators defined on the sur-
face domain.27, 28 The final ingredient is the definition of the
molecular cavity: in this respect, different choices have been
adopted,29 the most popular one being a rigid cavity built as
the superposition of atom-centered spheres with fixed radii,
corresponding to empirical van der Waals atomic radii mul-
tiplied by a solvent-dependent scaling factor. This choice al-
lows to have a regular discretization of the cavity surface that
helps numerical convergence (see Refs. 29 and 30, and ref-
erences therein). On the other hand, the numerical discretiza-
tion of the cavity surfaces has lead, in the original formula-
tions, to atomic forces that were not continuous with respect
to atomic positions and suffered from numerical singulari-
ties. For this reason, it has been difficult to extend PCM to
ab initio MD simulations. In order to solve such a problem,
modified versions of continuum models have been proposed
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in the literature.31, 32 Moreover, it is worth noting that more
advanced definitions of the molecular cavity have been pro-
posed in terms of an isodensity of the electronic density of the
solute. Isosurfaces of both the frozen electronic density of the
solute (isodensity PCM (Ref. 33) and the self-consistent den-
sity (SCI-PCM (Ref. 34)) have been considered. Nonetheless,
few applications of the above methods have been reported
in the literature, probably because of the absence of analytic
gradients.

In order to extend continuum solvation to ab initio MD
simulations, a novel approach has been proposed by Fatte-
bert and Gygi.1, 24 The main difference with respect to PCM
is in the definition of a dielectric function ε (r) ≡ ε

(
ρelec (r)

)
,

defined in terms of the electronic density ρelec of the solute,
and smoothly varying between 1, when ρelec is large, and ε0

when ρelec → 0. The physical problem is expressed in terms
of the electrostatic response generated by the embedding di-
electric and acting on the solute. This response field, which
is defined in the whole three-dimensional space, is then ob-
tained numerically by using a multigrid solver. The method
of Fattebert and Gygi requires – as it is argued here – a care-
ful choice for the dielectric function in terms of the electronic
density. Moreover, its implementation in plane-wave ab ini-
tio codes has been hindered by the necessity to interface such
codes with an efficient, high-order, ideally parallel multigrid
solver able to work in the arbitrary geometry of any Bravais
lattice.

III. PRESENT MODEL

We show now that, starting from the basic equations of
Fattebert and Gygi,1, 24 it is possible to recast the electrostatic
problem in terms of a polarization density, similar to what
is done in PCM. The key assumption is that of a dielectric
medium self-consistently modeled on the electronic density
of the solute, via a suitably defined relationship

ε (r) = ε(ρelec (r)), (1)

such that the dielectric is excluded (ε = 1) from the inner part
of the solute, where the electronic density is high, while it
smoothly goes to the bulk dielectric constant of the solvent
(ε = ε0) outside the solute, where the electronic density goes
to zero. By adding a dielectric medium to the system, the elec-
trostatic field that enters into the quantum-mechanical prob-
lem is no longer given by the Poisson equation in vacuum

∇2φtot (r) = −4πρsolute (r) , (2)

where the total charge density in vacuum is the sum of the
electronic and ionic densities,

ρsolute (r) = ρelec (r) + ρions (r) , (3)

but has to be the solution of the more complex Poisson
equation,

∇ · ε
(
ρelec (r)

)∇φtot (r) = −4πρsolute (r) , (4)

that is nothing but the standard Maxwell equation

∇ · D (r) = 4πρsolute (r) , (5)

for the displacement field

D (r) = E (r) + 4πP (r) = ε (r) E (r), (6)

where E (r) and P (r) are the electric field and the polarization.
Equation (5) can be transformed into an equation in terms

of the electric field

∇ · E (r) = 4πρsolute (r) − 4π∇ · P (r) (7)

and, by mapping the effect of the dielectric into a polarization
charge density

ρpol (r) ≡ −∇ · P (r) = ∇ ·
(

ε(ρelec (r)) − 1

4π
∇φtot (r)

)
,

(8)
a vacuum-like Poisson problem is recovered,

∇2φtot (r) = −4π (ρsolute (r) + ρpol (r)). (9)

As in PCM, the nonlinear nature of the problem that arises
from the mutual polarization of the solvent and solute is ac-
counted for via a polarization charge density that depends on
itself through the total electrostatic potential.

By evaluating the gradient on the right-hand side of
Eq. (8) and performing some simple algebraic manipulations,
the polarization charge density can be expressed alternatively
as the sum of two distinct terms,

ρpol (r) = 1

4π
∇ ln ε(ρelec (r)) · ∇φtot (r)

−ε(ρelec (r)) − 1

ε(ρelec (r))
ρsolute (r) . (10)

As in the case of PCM, introducing polarization charges al-
lows to deal with localized physical quantities. Indeed, both
terms in the above equations are only defined in a narrow re-
gion around the solute. In particular, the first term contains all
the nonlinear characters of the problem and is confined within
the vacuum-solvent interface, where the dielectric function
has a gradient different from zero. The second term, instead,
is a simple rescaling of the solute charge density that extends
into the vacuum region (see Ref. 35, and references therein):
although, in principle, defined in the whole three-dimensional
space, this term is also localized around the solute owing to
the exponential decay of the electronic charge density in the
dielectric region.

It should be noted that formulating the problem in terms
of the polarization charge density instead of the solvent elec-
trostatic potential allows - thanks to the Gauss theorem - to
define a sum rule for the total polarization charge surround-
ing the solute, namely,∫

ρpol (r) dr = −ε0 − 1

ε0

∫
ρsolute (r) dr. (11)

Eventually, from the linearity of the Poisson equation
(Eq. (9)), it follows that the total field can also be written as

φtot (r) = φsolute (r) + φpol (r) , (12)

where the φsolute or φpol fields are solutions of vacuum-like
Poisson equations in terms of the ρsolute or ρpol charge den-
sities. Such a formal separation of the potential is useful
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in order to express all of the important quantities that en-
ter into quantum-mechanical simulations (total energy, poten-
tials, forces, etc.) in terms of two contributions: one explic-
itly depending on the solute charge density alone (identified,
now and in the following, by the superscript solute) and one
explicitly depending on the dielectric (identified by the su-
perscript pol). The first term is analogous to a quantity com-
puted in vacuum and it is readily provided by the simulation
code adopted. On the other hand, the polarization contribu-
tions need to be explicitly added, in order to include the ef-
fect of the dielectric in the simulation. Although the method
can be applied to different quantum-mechanical approaches,
in the present article we will limit our discussion to the case
of density functional theory in the Kohn-Sham formulation.
The derivation of the polarization contributions to the electro-
static energy, Kohn-Sham energy, Kohn-Sham potential, and
atomic forces is presented below.

A. Electrostatic energy

Once the Poisson equation is solved and the polarization
of the dielectric is known, the electrostatic energy of the sys-
tem can be expressed as

Eel = 1

8π

∫
E (r) · D (r) dr

= 1

8π

∫
ε(ρelec (r))

∣∣∇φtot (r)
∣∣2

dr. (13)

By integrating by parts the last expression, the electrostatic
energy can be expressed as

Eel = 1

2

∫
ρsolute (r) φtot (r) dr. (14)

The same expression can be obtained starting from the
vacuum-like problem in Eq. (9), by expressing the electro-
static energy as the sum of the total interaction energy of the
charge densities of the system, both the solute and the polar-
ization one,

Eint = 1

2

∫
ρtot (r) φtot (r) dr

= 1

2

∫
(ρsolute (r) + ρpol (r))φtot (r) dr, (15)

with the addition of the work done to polarize the dielectric.
Such a work, assuming a linear behavior for the dielectric, can
be shown to be

W = −1

2

∫
P (r) · E (r)dr = −1

2

∫
ρpol (r) φtot (r) dr

(16)
that, combined with Eq. (15), correctly provides the result in
Eq. (14).

Adopting the decomposition of the potential introduced
in Eq. (12), the electrostatic energy of the system can be fur-
ther written as

Eel = Esolute + Epol, (17)

where the first term is the electrostatic energy of the solute,
including both electrons and ions,

Esolute = 1

2

∫
ρsolute (r) φsolute (r) dr, (18)

and is the analogous of the electrostatic energy of the system
in vacuum. Now, by exploiting the fact that

1

2

∫
ρsolute (r) φpol (r) dr = 1

2

∫ ∫
ρsolute (r) ρpol

(
r′)

|r − r′| drdr′

= 1

2

∫
ρpol (r) φsolute (r) dr, (19)

the polarization term can be included in two equivalent ways:
following PCM, as the integral of the polarization charge den-
sity × the potential of the solute charge densities acting on
it, or, vice versa, as the integral of the solute charge density
× the polarization potential acting on it,

Epol = 1

2

∫
ρpol (r) φsolute (r) dr (20)

= 1

2

∫
ρsolute (r) φpol (r) dr. (21)

B. Kohn-Sham energy and potential

From the above equations, the total DFT energy of the
system can be expressed as

Etot [ρelec, ρions] = Ekin[ρelec] + Eel[ρelec, ρions]

+Exc[ρelec]

= Ekin[ρelec] + Esolute[ρelec, ρions]

+Exc[ρelec] + Epol[ρelec, ρions]

= (Etot [ρelec, ρions])solute

+Epol[ρelec, ρions], (22)

where, in the last equality, we underline the fact that the
quantity

(Etot [ρelec, ρions])solute ≡ Ekin[ρelec] + Esolute[ρelec, ρions]

+Exc[ρelec] (23)

does not depend explicitly on the polarization charge distribu-
tion and, thus, is analogous to the total Kohn-Sham energy of
a system in vacuum.

The effective DFT potential acting on the electrons can
be written as (see, for example, Appendix A of Ref. 26)

δEtot [ρelec, ρions]

δρelec
=

(
δEtot [ρelec, ρions]

δρelec

)
solute

+ vpol + vε,

(24)

where the first term on the right-hand side includes all of the
contributions to the potential that do not depend explicitly on
the polarization charge density and is analogous to the poten-
tial of a system in vacuum. As for the two additional terms, the
first one is a purely local potential contribution and is simply
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given by the electrostatic potential generated by the polariza-
tion charge density,

vpol (r) = φpol (r) , (25)

while the second term arises from the dependence of the di-
electric on the electronic charge, as defined in Eq. (1), and is
given by

vε (r) = − 1

8π

dε(ρelec (r))

dρelec

∣∣∇φtot (r)
∣∣2

. (26)

C. Forces

Exploiting the Helmann-Feynman theorem, the force fa

acting on an atom a of the solute is given by

ftot
a = −∂Etot

∂Ra

= −∂Eel

∂Ra

, (27)

where Ra is the position of atom a and we exploit the fact
that the electronic kinetic energy and exchange-correlation
potentials do not depend explicitly on nuclear positions. By
using the expression for the electrostatic energy in Eq. (13),
the force is given by

ftot
a = − ∂

∂Ra

1

8π

∫
ε(ρelec (r))

∣∣∇φtot (r)
∣∣2

dr

= − 1

8π

[∫
|∇φtot (r) |2 ∂ε(ρelec (r))

∂Ra

dr

+
∫

ε(ρelec (r))
∂

∂Ra

|∇φtot (r) |2dr
]

. (28)

Provided that the dielectric permittivity is not an explicit func-
tion of the atomic positions of the solute, as is the case of
the definition adopted in Eq. (1), the first contribution in the
above equation is equal to zero. The second contribution, in-
stead, can be expressed as

ftot
a = − 1

8π

∫
ε(ρelec(r))

∂

∂Ra

|∇φtot (r)|2 dr

= − 1

4π

∫
ε(ρelec(r))∇φtot (r) · ∂

∂Ra

∇φtot (r) dr

= − 1

4π

∫
ε(ρelec(r))∇φtot (r) · ∇ ∂

∂Ra

φtot (r) dr

= −
∫ [

− 1

4π
∇ · ε(ρelec(r))∇φtot (r)

]
∂

∂Ra

φtot (r) dr

= −
∫

ρsolute ∂

∂Ra

φtot (r) dr. (29)

By applying the partial differential to the first formulation of
the electrostatic energy in Eq. (13), an alternative equation for
the force is obtained, namely,

ftot
a =− ∂

∂Ra

1

2

∫
ρsolute (r) φtot (r) dr

=−1

2

∫
φtot (r)

∂ρsolute (r)

∂Ra

dr − 1

2

∫
ρsolute(r)

∂φtot (r)

∂Ra

dr,

(30)

which, combined with Eq. (29), provides the useful relation∫
ρsolute (r)

∂φtot (r)

∂Ra

dr =
∫

φtot (r)
∂ρsolute (r)

∂Ra

dr. (31)

Similar to the expressions for the electrostatic and the Kohn-
Sham energies in Eqs. (17) and (22), also the interatomic
forces can be defined as sums of two terms,

ftot
a = −

∫
ρsolute (r)

∂

∂Ra

φsolute (r) dr

−
∫

ρsolute (r)
∂

∂Ra

φpol (r) dr (32)

= (
ftot
a

)
solute

+ fpol
a . (33)

The first contribution does not depend explicitly on the po-
larization charge density and is analogous to the interatomic
force on a system in vacuum. By using Eq. (31) and similar
to what is done in Eq. (19), the polarization contribution to
interatomic forces can also be expressed as

fpol
a = −

∫
φpol (r)

∂

∂Ra

ρsolute (r) dr (34)

= −
∫

ρpol (r)
∂

∂Ra

φsolute (r) dr, (35)

where the partial derivative is now applied to analytic func-
tions of nuclear positions.

When the dielectric depends instead explicitly on atomic
positions, Eq. (31) is no longer exact and additional contri-
butions to forces would arise. This is the case, for example,
when the dielectric constant is entirely defined in terms of a
fictitious electronic density centered at the atomic positions,
as described in Ref. 26. It is important to notice that similar
contributions to the forces arise also when the dielectric is de-
fined in terms of the sum of the electronic density plus a ficti-
tious ionic density, as is the case in, e.g., the original Fattebert
and Gygi model, where additional core charges were added
to saturate the dielectric constant in the solute region.1, 24 In
this case, a contribution similar to the one derived in Ref. 26
should be explicitly added to the forces, unless the derivative
of the dielectric with respect to this fictitious nuclear density
is zero, i.e., unless this density is added only in a region of
space where the resulting dielectric constant is flat.

IV. CHOICE OF DIELECTRIC FUNCTION

Although formally equivalent to the original Gygi-
Fattebert model, the equations presented above have the ad-
vantage of highlighting the numerical challenges of the orig-
inal formulation. In particular, the main ingredient of the
model is the dielectric function that appears in Eq. (1), and
for the model to work properly and seamlessly some condi-
tions on this function should be imposed. These conditions
are as follows:

1. Extrema: the dielectric function should go monotoni-
cally from a value of 1 (vacuum) inside the molecule
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FIG. 1. Numerical test. Left: single water molecule in a periodic cubic cell
of (25 a.u.) (Ref. 3) size. The isosurface of the density corresponding to a
threshold value of 0.0003 a.u. is shown. Right: electronic density of the water
molecule along the x axis passing through the center of the oxygen atom.

to a value of ε0 in the bulk of the solvent,{
limρelec→0 ε(ρelec) = ε0

limρelec→∞ ε(ρelec) = 1
. (36)

2. Flatness inside the solute: the dielectric should be ex-
actly equal to 1 above a certain density threshold, to
avoid spurious polarization effects due to the interaction
of the dielectric with the ion cores.

3. Flatness in bulk solvent: the dielectric should be exactly
equal to ε0 below a certain threshold, to avoid spurious
polarization charges in the bulk of the solvent due to
potential numerical noise in the exponentially vanishing
electronic density away from the solute.

4. Smoothness: since we are interested in implementing
the model in a plane-wave, periodic electronic-structure
code, the dielectric function and its gradient have to
be smooth enough to be well described in a three-
dimensional grid that has a resolution given by the typi-
cal density cutoffs used in plane-wave DFT calculations.
Such condition is crucial to the convergence of the it-
erative SCF calculation. Moreover, since our formula-
tion of the method relies on the polarization density of
the medium, this later quantity should also be smooth
enough to be well described with the density cutoffs that
are conventionally adopted.

The original dielectric function by Fattebert and Gygi,1, 24

εε0,ρ0,β(ρelec) = 1 + (ε0 − 1)

2

(
1 + 1 − (ρelec/ρ0)2β

1 + (ρelec/ρ0)2β

)
,

(37)

satisfies the first requirement, going very smoothly from
ε = 1 in the proximity of the solute to ε = ε0 in the bulk of the
solvent. The smoothness of the function allows it to be well
defined in the three-dimensional mesh used in typical calcu-
lations (see Figure 2). Nonetheless, convergence issues may
arise in some particular systems. Such issues have been re-
ported by Sanchez et al.26 for simulations of two-dimensional
systems (i.e., slabs), and result from the fact that the gra-
dient of the dielectric function and the dielectric-dependent
contribution to the potential in the energy functional are too
abruptly varying to be correctly described with typical grid
sizes. As an example, the sharp behavior of the extra func-
tional terms is reported in Figure 2 for the simple system of
a single water molecule in a cubic box (Figure 1). It is worth
noting here that the extra potential term vε of Eq. (26) is some-
what similar to the polarization charge density: both quanti-
ties depend on the gradient of the dielectric and of the total
field, thus they are both confined in the small region around
the solute and suffer from the same conditioning problems
(compare, for example, the two quantities in Figure 2). Last,
the smoothness of the Fattebert and Gygi function leads to
a polarization density in a region very close to the nuclei,
potentially breaking the second requirement. As mentioned
in Sec. III, this problem has already been pointed out in the
original paper by Fattebert and Gygi, and it has been solved
by using an additional density in the definition of ε (ρ (r)) in
order to force the dielectric constant to go to ε = 1 in the
proximity of the nuclei.1, 24 While this approach is correct in
theory, in practice it introduces some additional terms in the
forces acting on the nuclei that have to be explicitly consid-
ered (see the final discussion in Sec. III). Moreover, the fi-
nal result of the calculation depends strongly on the choice of
the introduced additional density or on the choice of parame-
ters used to model the ionic density (i.e., shape of the nuclei
and Gaussian spread). For these reasons, it appears that the
original function, at least in the parametrization adopted in
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FIG. 2. (a) Dielectric function (red) and polarization charge (blue) of the water molecule of Figure 1 plotted along the x axis. (b) Polarization field [Eq. (25)] and
additional self-consistent dielectric contribution to electronic Hamiltonian [Eq. (26)] for the same system. Physical quantities are computed using the original
formulation by Fattebert and Gygi [Eq. (37)] with the parameters reported in Ref. 2. The filled circles correspond to the points of the real space grid used in the
calculation, corresponding to a density cutoff of 400 Ry.
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FIG. 3. Behaviors of the dielectric function (left), its derivative (center), and
the derivative of its logarithm (right) for the three different switching func-
tions reported in Eq. (39), black, Eq. (40), red, and Eq. (42), blue. The same
set of density cutoffs (ρmax = 0.0035 a.u. and ρmin = 0.0001 a.u.) has been
used for the three functions.

Ref. 2, is excessively smooth where it should not (close to the
nuclei), while not smooth enough where it should (outside the
molecule).

With the aim of correcting these drawbacks, we decided
to introduce a new expression for the dielectric function by
using a piecewise definition of the dielectric of the form

εε0,ρmin,ρmax
(ρelec) =

⎧⎪⎨
⎪⎩

1 ρelec > ρmax

s
(
ρelec

)
ρmin < ρelec < ρmax

ε0 ρelec < ρmin

,

(38)

where s(x) is a general smooth switching function that de-
creases monotonically from s(ρmin) = ε0 to s(ρmax) = 1.
Several switching functions s(x) were considered, e.g., the
trigonometric function

s (x) = 1 + ε0 − 1

2π

[
2π

(ρmax − x)

(ρmax − ρmin)

− sin

(
2π

(ρmax − x)

(ρmax − ρmin)

)]
. (39)

Nonetheless, despite their similarity with the original func-
tion of Fattebert and Gygi, all of the trial functions resulted
in even worse or no convergence of the electronic-structure
calculation at any reasonable cutoffs. The reason for such
a ill-conditioning is that the region where the s(ρelec) func-
tion is defined lies outside of the molecule, where the elec-
tronic density decays exponentially. Thus, the resulting func-
tion s (r) also decays exponentially. Nevertheless, since the
electronic density is known to vanish exponentially, the prob-
lematic analytical behavior can be rectified easily by redefin-
ing the switching function in terms of the logarithm of the
density, namely,

s ′ (ρelec
) = s(ln ρelec) = 1 + ε0 − 1

2π

[
2π

(ln ρmax − ln ρelec)

(ln ρmax − ln ρmin)

− sin

(
2π

(
ln ρmax − ln ρelec

)
(ln ρmax − ln ρmin)

)]
. (40)

In order to increase the smoothness of the dielectric
function and of the resulting polarization charges, a fur-
ther condition can be imposed on the form of the switch-

ing function. In particular, from Eq. (10) it is clear that the
polarization charges are mostly given by a term of the form
∇ ln ε

(
ρelec (r)

) · ∇φtotal (r). While no assumptions can be
made, a priori, on the behavior of the gradient of the to-
tal field, in defining the dielectric function it is convenient
to choose a form of the switching function such that the
derivative of its logarithm is well behaved. This can be eas-
ily achieved by selecting a dielectric function of the form

εε0,ρmin,ρmax
(ρelec) =

⎧⎪⎨
⎪⎩

1 ρelec > ρmax

exp(t
(
ln ρelec

)
) ρmin < ρelec < ρmax

ε0 ρelec < ρmin

,

(41)

where t(x) is a general, smooth function that decreases mono-
tonically from t(ln ρmin) = ln ε0 to t(ln ρmax) = 0. Explicitly,
in this work, we decided to adopt the trigonometric function

t (x) = ln ε0

2π

[
2π

(ln ρmax − x)

(ln ρmax − ln ρmin)

− sin

(
2π

(ln ρmax − x)

(ln ρmax − ln ρmin)

)]
, (42)

whose first derivative,

dt (x)

dx
= − ln ε0

(ln ρmax − ln ρmin)

×
[

1 − cos

(
2π

(ln ρmax − x)

(ln ρmax − ln ρmin)

)]
, (43)

vanishes with zero slope at the extrema of the interval of def-
inition, thus making ε and its first two derivatives continu-
ous in the whole space. The behaviors of the three different
types of switching functions proposed above are reported in
Figure 3 for the test system considered in Figure 1. It is impor-
tant to notice that the proposed function does not contain any
internal adjustable parameters, but only depends on the value
of the dielectric constant and on the two density thresholds
ρmin and ρmax.

V. ITERATIVE VS MULTIGRID

In order to effectively compute the polarization field in
Eq. (4) and related polarization charges, different numerical
procedures can be adopted. While most of the previous im-
plementations rely on multigrid solvers, we have found more
advantageous to rely on an iterative procedure, derived along
the lines of a similar approach first introduced in the PCM.

In particular, given the total charge density of the solute,
the second term for polarization charge appearing in Eq. (10)
is readily obtained, while for the first one, that we label ρ iter,

ρiter = 1

4π
∇ ln ε(ρelec (r)) · ∇φtotal (r) , (44)

the following procedure can be adopted:

1. In order to avoid calculations of polarization effects for a
system with a non-converged electronic density, solvent
effects are computed only when the accuracy of the SCF
calculation reaches a given threshold value τ SCF.

Downloaded 08 Feb 2012 to 128.178.23.99. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



064102-8 Andreussi, Dabo, and Marzari J. Chem. Phys. 136, 064102 (2012)

2. At the first iteration for the dielectric, the initial polar-
ization charge is fixed to be equal to zero. All following
calculations at each subsequent electronic SCF step use
the polarization density from the previous step, namely,{

ρiter
0 = 0 for the first polarization calculation

ρiter
0 = ρiter

old otherwise
.

(45)

3. The total density of the system (solute plus polarization)
at iteration n is computed as

ρtot
n (r) = ρsolute (r) + ρpol

n (r) (46)

= ρsolute (r) + ρiter
n (r) + 1 − ε

(
ρelec (r)

)
ε
(
ρelec (r)

) ρsolute (r)

(47)

= 1

ε
(
ρelec (r)

)ρsolute (r) + ρiter
n (r) . (48)

4. The gradient of the total field is computed in reciprocal
space via one fast Fourier transform (FFT) and three in-
verse FFTs (IFFTs),

ρtot
n (r)

FFT→ ρtot
n (g) , (49)

∇φtot
n+1 (g) = 4πig

g2
ρtot

n (g) , (50)

∇φtot
n+1 (g)

3×IFFT s→ ∇φtot
n+1 (r) . (51)

5. The iterative part of the polarization charge at the (n
+ 1)th step is computed by using Eq. (44), namely,

ρiter
n+1 (r) = ∇ ln ε(ρelec (r)) · ∇φtot

n+1 (r) . (52)

6. A linear mixing of the polarization at the (n + 1)th and
nth steps is performed in order to stabilize the iterative
procedure,

ρiter
n+1 (r) := ηρiter

n+1 (r) + (1 − η) ρiter
n (r) , (53)

with η a given mixing parameter (usually η � 0.6), and
the residual ρres (r) is computed,

ρres (r) = ρiter
n+1 (r) − ρiter

n (r) . (54)

7. The polarization density is converged when

〈(ρres(r))2〉 < τpol, (55)

with τ pol a given tolerance, and the iterative procedure is
stopped.

Typical results for the polarization density of neutral
molecules in water are reported in Figure 4.

For numerical stability, we find important to compute
∇ ln ε(ρelec (r)) in real space, e.g., by using finite differences.
While computing such a gradient via FFTs would yield a

FIG. 4. Positive (orange) and negative (blue) polarization charges of a water
molecule, on the left, and of a piperazine molecule, on the right (molecule
013 of the training set, structure in Figure 6). Brighter (darker) colors corre-
spond to values of the density around ±0.03 a.u. (±0.01 a.u.). Stronger po-
larization charge densities are found around the lone pairs of electrons of the
heteroatoms (oxygen in red and nitrogen in blue) and on the more polarized
hydrogen atoms, such as the ones attached to the heteroatoms.

truly variational energy expression, going through recipro-
cal space would unavoidably give rise to spurious polariza-
tion charges in “forbidden regions.” In particular, polarization
charges close to the nuclei would form, thereby severely com-
promising the convergence of our procedure. Several real-
space finite-difference schemes were tested, with the simplest
3-point central difference algorithm providing converged re-
sults for the majority of tests and simulations. Nonetheless,
for microcanonical molecular dynamics simulations, total en-
ergy conservation was found to strongly depend on the order
of the finite-difference scheme adopted, with only high-order
algorithms providing the necessary degree of accuracy in the
interatomic forces (see the discussion in Subsection VII B 3).

Similarly to standard SCF calculations, convergence of
iterative calculations depends crucially on the use of a mixing
scheme. Different mixing schemes can be adopted, such as the
Anderson mixing,36 the modified Broyden mixing,37 or the
direct inversion in the iterative subspace.38 In order to reduce
the number of numerical parameters involved in the calcula-
tions, in this article only results obtained with a simple linear
mixing are reported. Apart from enhancing convergence, no
significant effects on the final results exist for different mix-
ing parameters in the range 0.2 < η < 0.6.

The total number of polarization iterations required is
strictly related to the tolerance τ pol imposed on the residuals.
A large value of τ pol in Eq. (55) would allow the polarization
procedure to stop in a few iterations. Nonetheless, poorly con-
verged polarization screening does prevent the electrons from
reaching their ground state, requiring a much higher num-
ber of SCF steps to converge (see top and middle panels of
Figure 5).

Since a single SCF step is much more computationally
expensive than a polarization iteration, which only involves
four FFTs, it has been found preferable to impose a tight con-
vergence tolerance on the polarization charge (bottom panel
of Figure 5). More advanced schemes that rely on a toler-
ance that depends on the convergence of the electronic den-
sity have been tested. Moreover, a scheme could be envisaged
where the polarization density and the electronic density are
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FIG. 5. Effects of the tolerance on the convergence of polarization charges
τ pol, Eq. (55). Top: when the iterative tolerance is set to a large value, only
one polarization iteration per SCF cycle is needed. The polarization accuracy
increases in unison with the SCF cycles, but convergence of the electronic
density is slowed down. Bottom: for a small value of the iterative tolerance
(i.e., tight convergence in the dielectric cycle), many polarization iterations
are needed for each SCF cycle. Global convergence to the electronic ground
state is not affected by the presence of the solvent, or actually it is improved
with respect to the simulation in vacuum. Middle: intermediate case.

optimized with the same common iterative algorithm, i.e.,
where the polarization density is mixed once per SCF cycle
and with the same procedure used for the electronic density.
Nonetheless, for sake of simplicity, only results obtained with
a fixed tolerance on the polarization charge are presented.

The behavior of the SCF procedure is also strictly depen-
dent on the choice of the threshold value for the onset of the
polarization calculation, τ SCF. Waiting for the electrons to be

converged before starting the polarization calculation could
seem an efficient way of proceeding. Nonetheless, switching
on the polarization fields strongly affects the SCF procedure,
bringing the electrons as far from their ground state as at first
SCF steps. For this reason, larger values of τ SCF, of the order
of 0.1-0.5 Ry, were found to give smoother SCF convergence,
with no effects on the final results.

Overall, the whole procedure benefits significantly from
the advantageous scaling of FFT techniques. Contrary to
multigrid solvers, FFTs are already available in fast, well-
established, parallel libraries and form already a key in-
gredient in most plane-wave electronic-structure codes.
Moreover, the method relies on fully periodic boundary
conditions, so it can be straightforwardly applied to peri-
odic systems in arbitrary unit-cell geometries without requir-
ing a cubic cell and imposing arbitrary Dirichlet boundary
conditions on the potential, as in the multigrid cases. In po-
lar solvents, periodicity does not affect final results, since
the solvent screens very effectively the charge density of the
solute. Moreover, periodic image correction schemes, such as
the Makov-Payne correction39 or countercharge methods,40, 41

can easily be adopted to include the polarization charge den-
sity, by treating it at the same level as the molecular charge
distribution.

VI. ADDITIONAL SOLVATION TERMS

The model described in Secs. II–V focuses only on elec-
trostatic contributions to solvation7

�Gel = Gel − G0, (56)

where G0 ≡ (Etot)vacuum is the ab initio energy of the isolated
solute in vacuum and Gel is the analogous quantity computed
in solution, i.e., from Eq. (22). Such a contribution is always
negative, i.e., allowing the medium to polarize always stabi-
lizes the solute and lowers its total energy. Of course, other
effects than electrostatic are present in any solvation process
and they play a crucial role in balancing the overall solvation
energies that can be negative or positive. According to the
formal definitions of Ben-Naim,42, 43 PCM introduced other
non-electrostatic terms in the solute Hamiltonian, still assum-
ing a continuum approach in the description of the medium.
The main terms can be divided (see Eq. (79) of Ref. 7) into

�Gsol = �Gel + Gcav + Grep + Gdis + �Gtm + P�V.

(57)

In the above formula, the cavitation energy Gcav corresponds
to the energy necessary to build into the solvent the cavity
containing the solute. The repulsion Grep and dispersion Gdis

terms are the continuum equivalent of the non-bonded short-
range interactions generated by the Pauli exclusion principle
and by van der Waals interactions. The thermal motion con-
tribution Gtm arises from the change in the vibrational and ro-
tational properties of the solvated system with respect to the
isolated one, and the pressure term P�V takes into account
the change in volume of the solvated system. Different models
exist for each of the non-electrostatic terms, a comprehensive
review being given in Ref. 7. In standard PCM calculations,
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only the first three non-electrostatic terms are explicitly ac-
counted for. Of these, cavitation and repulsion energies are
positive by definition, while the dispersion contribution is al-
ways negative. Overall, these terms tend to cancel each other
and their effect on molecular properties and chemical reac-
tions has been generally regarded as less important than the
electrostatic term.

The model by Fattebert and Gygi was extended by
Scherlis et al.2 to include a cavitation term, simply expressed
as the product of the experimental surface tension of the sol-
vent γ × the surface S of the solute cavity, namely,

Gcav = γ S. (58)

The surface above is the “quantum surface” introduced in
Ref. 3 and defined, via the “quantum volume,”3 by the finite
difference between two isosurfaces of the electronic density
as

S =
∫

dr
{
ϑρ0− �

2
(ρelec (r)) − ϑρ0+ �

2
(ρelec (r))

}

×|∇ρelec(r)|
�

. (59)

From the functional derivative of the cavitation energy
(Eq. (58)) with respect to the charge density, an extra potential
term of the form

δGcav[ρelec]

δρelec
= γ

�

{
ϑρ0− �

2
(ρelec(r)) − ϑρ0+ �

2
(ρelec(r))

}

×
⎡
⎣∑

i

∑
j

∂iρ
elec (r) ∂jρ

elec (r) ∂i∂jρ
elec (r)

|∇ρelec (r) |3

−
∑

i

∂2
i ρelec (r)

|∇ρelec (r) |

]
(60)

can be straightforwardly added to the Kohn-Sham Hamilto-
nian. The ϑρ0 function entering in the above equations was
originally designed to be a step function, switching from zero
to one at the threshold ρ0, namely,

ϑρ0 (ρelec(r)) = ϑ(ρelec(r) − ρ0) =
{

0 ρelec(r) − ρ0 > 0

1 ρelec(r) − ρ0 < 0
.

(61)

To improve the numerical stability of the algorithm, a
smoothed step function of the same form, i.e., ϑ(ρelec(r)
− ρ0), was also suggested. The finite difference parameter �

was then used in Eq. (59) to determine two adjacent isosur-
faces separated by a constant separation in terms of electronic
density.

Subsequently, in order to use a definition consistent with
the dielectric function used in the electrostatic solvation cal-
culation, the function

ϑρ0,β

(
ρelec (r)

) = 1

2

[(
ρelec (r) /ρ0

)2β − 1(
ρelec (r) /ρ0

)2β + 1
+ 1

]
(62)

was adopted. We note that, while very similar in spirit to the
original formulation by Cococcioni et al.,3 the use of Eq. (62)

together with Eq. (59) is not formally exact, since the param-
eter ρ0 entering in Eq. (62) is not in a linear relationship with
the argument of the switching function. Thus, applying the
finite difference procedure to this arbitrary parameter as in
Eq. (59) does not correspond to calculating the spatial dis-
tance between the two isosurfaces. For this reason, surfaces
computed with Eq. (59) result in an overestimate of approxi-
mately a factor of 1.2 of the correct quantum surface. Such an
overestimate can be avoided by applying the finite difference
procedure directly to the argument of the switching function,
namely,

S =
∫

dr
{
ϑ{α}

(
ρelec (r) − �

2

)
− ϑ{α}

(
ρelec (r) + �

2

)}

× |∇ρelec (r) |
�

. (63)

where now the ϑ{α}(ρelec(r)) function is a given switching
function that depends on an arbitrary set of parameters {α}
and that goes from zero to one at a fixed threshold larger than
�/2. We notice here that, while the above expression is valid
for any kind of switching function, for a ϑ function defined
according to the original formulation of Cococcioni et al.
[Eq. (61)], Eqs. (59) and (63) are equivalent. For the sake of
consistency with the electrostatic solvation term, the follow-
ing definition is adopted:

ϑρmin,ρmax
(ρelec(r)) = ε0 − εε0,ρmin,ρmax

(ρelec(r))

ε0 − 1
, (64)

where εε0,ρmin,ρmax
(ρelec(r)) is now given by Eq. (41).

In a similar way, the method of Cococcioni et al. to treat
systems under pressure can be immediately extended to the
calculation of the P�V term that appears in Eq. (57). Ex-
plicitly, by adopting the same switching function used to de-
fine the solute surface Eq. (64), the solute volume can be ex-
pressed as

V =
∫

drϑ(ρelec(r)), (65)

which gives rise to an extra potential term in the Kohn-Sham
Hamiltonian of the form

δPV [ρelec]

δρelec
= P

δϑ(ρelec)

δρelec
. (66)

By including the PV term in the total energies of both the
system in vacuum and in solution, the P�V contribution is
automatically included in the solvation free energy computed
via Eq. (56). Such a contribution can be important for systems
under pressure while, for systems at standard pressures, it can
be safely neglected.

As for the remaining contributions to the solvation free
energy, we have decided to treat them in a simplified way,
their explicit modeling being the subject of future develop-
ments. In particular, similar to other models of solvation, the
thermal motion contribution has been neglected, while we ex-
press the sum of dispersion and repulsion free energies as
a term linearly proportional to the quantum surface and the
quantum volume of the molecular cavity, namely,

Grep + Gdis = αS + βV, (67)
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where the two factors α and β are solvent-specific tunable
parameters that can be fitted, together with the other param-
eters in the model, e.g., to reproduce total solvation energies.
This approach is coherent, for example, with the definition
of repulsion energy used in the PCM,44 where such a term
is proportional to the solute electronic density that lies out-
side the molecular cavity: in a model where the molecular
cavity is defined on an isosurface of the density, the amount
of electronic charge outside the cavity will be proportional to
the surface of the cavity. Moreover, such an approach is sim-
ilar in spirit, but with less parameters, to the one adopted by
Cramer and Truhlar in their generalized Born method of sol-
vation and, more recently, in their SMx models (see Ref. 45,
and references therein). In these classes of methods, all of the
non-electrostatic terms of solvation are described as the sum
of atomic terms, proportional to the solvent-accessible surface
area of each atom of the solute.

The final expression for the solvation free energy of our
simplified model is, thus, given by

�Gsol = �Gel (ε0, ρmin, ρmax) + (α + γ ) S + βV, (68)

where the main parameters involved in the electrostatic con-
tribution are explicitly reported.

VII. RESULTS

A. Numerical details

A large set of experimental solvation free energies for
240 small neutral organic molecules in water was used to test
the proposed computational methodology. The molecules of
the set have been collected in Ref. 46 to test the accuracy of
classical molecular dynamics free energy perturbation calcu-
lations. Based on hierarchical clustering, a smaller represen-
tative set of 13 molecules (reported in Figure 6) spanning the
main functional groups of organic molecules is also provided
in Ref. 46 and is used here to test the convergence of numeri-
cal parameters and to fit tunable parameters.

FIG. 6. Fitting set: chemical structures and labels of the 13 small, neutral,
organic molecules used to fit the solvation model and to test the accuracy of
the model with respect to numerical parameters. Names, solvation energies,
and computed results for the molecules in the set are reported in the tables in
the supplementary material.47

PCM calculations were performed at the Hartree-
Fock and density functional theory level, using both the
GAUSSIAN 03 (G03) (Ref. 48) and GAUSSIAN 09 (G03)
(Ref. 49) versions of the GAUSSIAN code. For the sake
of brevity, in the remaining discussions the labels g03/g09
will be used to refer to the two different flavors of PCM
(Refs. 20, 29) implemented as defaults in the G03/G09 ver-
sions of the GAUSSIAN code. Both standard PBE and hy-
brid B3LYP exchange-correlation functionals were tested.
The dependence of the results on the chosen theoretical ap-
proximations was found to be minor and generally negligi-
ble compared to the overall agreement with experimental re-
sults. Thus, only results obtained with the PBE functional
will be reported. Geometries were optimized both in vacuum
and in solution with a double zeta 6-31g(d) basis set. Start-
ing from the relaxed geometries, total energies were com-
puted with a triple zeta 6-311+g(d,p) basis set. Due to the
lack of such basis sets for the iodine atom, calculations with
GAUSSIAN were not performed on the eight molecules of the
set containing this atomic species. For the other molecules,
calculations were performed using PCM to compute both
electrostatic and cavitation energies. For the latter contribu-
tion and in order to be coherent with the original definition
of the cavitation term, calculations were performed with a
cavity built using unscaled Bondi’s atomic radii.50 For all
other calculations, the default cavities were used. In partic-
ular, IEF-PCM as implemented in G03 adopts a cavity de-
fined according to the solvent excluded surface51 as approx-
imated by the GePol algorithm,52 and based on spheres of
united atom radii.53 The version of IEF-PCM implemented
in G09, instead, relies on a simpler cavity,29 built as the com-
bination of atom centered van der Waals spheres of Universal
Force-Field radii,54 and scaled by a factor of 1.1.

Our continuum solvation model has been implemented
in the public-domain PWSCF parallel code included in the
Quantum ESPRESSO package,55 based on DFT, periodic-
boundary conditions, plane-wave basis sets, and pseudopo-
tentials (PP) to represent the ion-electron interactions. All
the calculations reported in this work were performed at the
Gamma point of the Brillouin zone (as is appropriate for
molecules), using the PBE exchange-correlation functional
and Vanderbilt ultrasoft pseudopotentials (USPP), as con-
tained in the PSlibrary of Corso.56 For bromine and iodine, we
have used the USPPs available online.57 Kohn-Sham wave-
functions and charge densities were expanded in plane waves
up to kinetic energy cutoffs of 30 and 300 Ry, respectively.
For molecules containing fluorine, these cutoffs were further
raised to 45 and 450 Ry. Simulation cells were chosen to be at
least 15.0 a.u. larger than the maximum size of the molecule
in vacuum, and not smaller than 20.0 a.u. Spurious periodic-
image effects were taken into account, for all the molecules,
using the Makov-Payne corrective scheme.39

In order to ensure a consistent description of solvent ef-
fects across our large set of simulations used to fit the tun-
able parameters of the method, a larger basis set was adopted,
corresponding to wavefunction and density cutoffs of 40 and
400 Ry, respectively. Moreover, since the effect of the tun-
able parameters on the final geometries of the benchmark
molecules was found to be of secondary importance (less than
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0.1 kcal/mol), the fitting simulations were performed with no
geometry relaxation and starting from molecular geometries
optimized using a reasonable set of parameters (ρmax = 0.008
a.u., ρmin = 0.00015 a.u., γ = 72 dyn/cm, α = 0 dyn/cm, β

= 0 GPa).
The accuracy of the method and, in particular, of the

forces calculation was tested by means of Born-Oppeneimer
ab initio molecular dynamics simulations of a prototypical
system in vacuum and in solution. Equilibration of the sys-
tem was first performed with a timestep of 60 a.u. (≈1.45 fs)
in the NVT ensemble at 300 K, as imposed by a Berendsen
thermostat. Following equilibration at constant temperature,
simulations were performed in the microcanonical ensemble.
In order to ensure proper energy conservation for the simu-
lation in vacuum, some key simulation parameters had to be
tightened. In particular, the wavefunction and density cutoffs
were raised to 40 Ry and 600 Ry, respectively. Similarly, the
timestep was decreased to 20 a.u. (≈0.48 fs) and the threshold
controlling the convergence of the electronic SCF procedure
was imposed to be 10−11 Ry. The same set of parameters was
then used for the simulations in the presence of the solvent.

In order to study the influence of the numerical parame-
ters of the method on the final results, unrelaxed electrostatic
solvation energies were calculated as

�Gel,0 = Gel,0 − G0, (69)

where, contrary to Eq. (56), the electrostatic energy of the sys-
tem in solution is computed using the geometry optimized in
vacuum (Gel, 0). This was done with the aim of removing a
further source of errors from the analysis of the numerical
sensitivity of the method.

B. Parametrization

As summarized in Eq. (68), our approach involves six
main parameters. Of these, the bulk dielectric constant ε0 and
the surface tension γ represent physical quantities, specific
of the solvent, that can be computed from first principles or,
more often, extracted from experimental results. The remain-
ing four parameters, i.e., the two thresholds entering into the
definition of the dielectric function and the α and β constants
of Eq. (67), are tunable quantities that affect the computed
solvation energies. As such, these parameters have to be fitted
on reference calculations or experimental data, as reported in
the following Subsection VII B 1. It is important to under-
line here that the comparisons with PCM are not intended to
represent a direct assessment of the accuracy of PCM or of
other continuum models in the literature, but rather they serve
two other purposes. First, they are intended to show the intrin-
sic flexibility of the SCCS formulation, which can reproduce
well results of other approaches exploiting a much reduced
number of parameters. Second, using well-established con-
tinuum models simplifies the fitting procedure in comparison
to relying solely on experimental data. For the above reasons
and due to their widespread use and assessment in the liter-
ature, comparisons and fittings are only made with the two
main versions of IEF-PCM, as implemented in the Gaussian
simulation packages.29, 58 We are aware that other continuum
models exist in the literature7, 22, 34, 45, 59 and some of these34, 59

could also be fitted within the SCCS formulation; nonethe-
less, such extensive comparison is beyond the purpose of this
article.

In addition to the parameters reported in Eq. (68), the
proposed methodologies rely on a certain number of com-
putational parameters. These are purely numerical quantities,
that influence the speed and stability of the calculations but,
apart from pathological cases, should not affect the calcu-
lated results. These parameters include the standard parame-
ters of plane-wave periodic boundary calculations (wavefunc-
tion and density cutoffs, cell size, pseudopotentials) together
with some solvent specific quantities, such as the tolerances
of the iterative approach τ SCF and τ pol, the parameter η enter-
ing into the polarization density mixing approach, the finite
difference parameter � used in the calculation of the molec-
ular surface, and the radii of the fictitious ionic densities used
in the Ewald evaluation of electrostatic contributions. While,
in theory, these parameters can be freely adjusted to make the
method more efficient and more stable, a careful analysis of
their effects on the final results is mandatory and is reported
in the Appendix.

1. Fitting of tunable parameters

In particular, since the proposed model mostly focuses on
the electrostatic contribution to solvation free energies, it is
difficult and even not physical to fit tunable parameters of the
model to reproduce total solvation free energies of molecules.
Indeed, such a fit would intrinsically rely on cancellation of
errors and would be highly dependent on the solutes and sol-
vents considered. Furthermore, it is mostly the electrostatic
part of solvation that plays a role in determining the molec-
ular properties of a solute in solution, such as solvent effects
on molecular spectra (IR, UV, or NMR) or on reaction rates.
An ideal fitting would thus require parametrizing the model
on these molecular properties. Since already existing con-
tinuum models of solvation have generally achieved a very
good description of molecular properties in solution, and the
IEF-PCM predictions for electrostatic solvation energies have
been successfully used by several methods45, 60–62 as the basis
onto which one could parametrize more complete models of
solvation, we decided to use the electrostatic part of the re-
sults obtained with the PCM to parametrize the electrostatic
part of our model, while the non-electrostatic terms have been
tuned in a second stage in order to improve the fit with respect
to experimental total solvation free energies.

The two main parameters of the electrostatic part of
SCCS to be fitted are the two density thresholds ρmin and
ρmax that enter into the definition of the dielectric constant
[Eq. (41). In particular, ρmax defines the onset of the dielectric
and, for the flatness conditions (see Sec. IV) to be fulfilled,
should correspond to a density isosurface as far from the nu-
clei as possible. Thus, we consider only values lower than
0.005 a.u. for ρmax. As for ρmin, since the electronic density in
plane-wave codes is computed via FFTs and can present small
oscillations also in regions of space far from the molecule, it is
important to define this threshold such that it is not influenced
by numerical noise in the electronic density. For this reason,
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FIG. 7. (a) SCCS mean absolute error with respect to PCM-G09 electrostatic solvation energies for the 13 molecules of the training set. (b) Comparison of
SCCS electrostatic predictions with PCM-G09 predictions for the 240 molecules of the full set.

only values of ρmin higher than 0.00005 a.u. have been con-
sidered in the fit.

Mean absolute errors (MAEs) relative to PCM electro-
static solvation energies as a function of ρmin and ρmax are re-
ported in Figures 7 and 8, for G09 and G03, respectively, and
in the supplementary material.47 From both graphs, it appears
that there is no unique optimal fit for the two parameters ρmin

and ρmax. In fact, for each value of ρmin, there exists a value
of ρmax that provides the optimal fit with respect to the refer-
ence. This observation offers some additional freedom in the
choice of the two parameters.

The agreement with the G09 results is excellent with a
mean absolute error lower than 0.4 kcal/mol on the 13 bench-
mark molecules of the training set (see Figure 7(a)). Out of
the possible choices of the two parameters, the values of ρmin

= 0.0001 a.u. and ρmax = 0.0015 a.u. were selected (fitg09),
giving a minimal MAE of 0.36 kcal/mol for the 13 molecules
of the training set. The MAE is found to further decrease
to 0.27 kcal/mol for the full set of 240 molecules reflecting
the remarkable transferability of the fit performed on only 13

benchmark molecules. This result is made more remarkable
by the fact that our model relies on only two parameters for
the definition of the cavity hosting the solute, at variance with
PCM that involves in its simplest implementation a different
empirical parameter for each atomic species.

Parametrizing the method on the electrostatic solvation
energies obtained with the G03 version of the PCM model re-
sulted in a less close agreement, with MAE of the order of 1.0
kcal/mol (see Figure 8(a)); again, also in this case, results im-
prove when the full set of 240 neutral molecules is considered.
In particular, using ρmin = 0.0001 a.u. and ρmax = 0.0050 a.u.
(fitg03), an average error of 0.95 kcal/mol is obtained (see
Figure 8(b)). By comparing Figures 7(a) and 8(a), it is impor-
tant to notice that, for each value of ρmin, the value of ρmax that
gives the best fit of the PCM results in the G03 case is always
higher than the corresponding G09 fit. This corresponds to a
cavity that is closer to the solute, and is a behavior to be ex-
pected. The reason for such a result lies in the different defini-
tion of the molecular cavity in the two versions of the model,
the G09 version relying, in the default implementation,
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FIG. 8. (a) SCCS mean absolute error with respect to PCM-G03 electrostatic solvation energies for the 13 molecules of the training set. (b) Comparison of
SCCS electrostatic predictions with PCM-G03 predictions for the 240 molecules of the full set.
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FIG. 9. (a) SCCS mean absolute error with respect to cavitation energies computed by PCM-G03 for the 13 molecules of the training set. (b) Comparison of
SCCS cavitation predictions with PCM-G03 predictions for the 240 molecules of the full set, using the cavity parameters optimized to reproduce the electrostatic
solvation energy of PCM-G09. The value of γ is set to be equal to 72 dyn/cm.

on a larger solute cavity.29 Similarly, the reason for the less
good agreement between SCCS and PCM G03 results is most
likely due to the more elaborate definition of the molecular
cavity in PCM G03, where an additional set of spheres was
added to the cavity to smooth out intersecting regions.

As a further test of the flexibility of the proposed SCCS
model, a comparison of the cavitation energies computed with
Eq. (58) versus that of the Claverie-Pierotti method imple-
mented in PCM was performed and reported in Figure 9. Also
in this case, even though the two methods are based on differ-
ent physical assumptions, results show a remarkable agree-
ment. Errors of the order of 0.8 kcal/mol were found on the
computed cavitation energies, despite the fact that they are
typically four times larger than solvation energies. Calcula-
tions of Gcav on the whole set of molecules were performed
using the experimental value of γ = 72 dyn/cm for liquid wa-
ter at room temperature and the fitg09 set of parameters, since

these set lie close to the region of best match with the PCM
cavitation energies (see Figure 9).

Eventually, while keeping the two parameters of the cav-
ity fixed to either the fitg09 or the fitg03 values, and assuming
a surface tension γ = 72 dyn/cm for water at room tempera-
ture, the parameters α and β entering into the definition of the
non-electrostatic terms, Eq. (67), have been optimized to best
reproduce the experimental results of solvation free energies
(see Figures 10 and 11).

In both cases, an almost perfectly linear behavior was
found for the error as a function of the two parameters. This is
probably due to the small variation in the size of the molecules
considered in the training set, which makes the volume and
the surface terms to be linearly related (see Figure 12). When
looking at the behavior of the quantum volume with respect
to the quantum surface of the solute for the 240 molecules of
the full set, we found a trend in between the one expected for
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FIG. 10. (a) SCCS mean absolute error with respect to experiments for the 13 molecules of the training set. (b) Comparison of SCCS solvation energies
with experimental solvation energies for the 240 molecules of the full set. In both graphs, the electrostatic parameters of the SCCS are fitted on G09 (ρmin

= 0.0001 a.u., ρmax = 0.0015 a.u.). Results in (b) are obtained with the fitg09 set of parameters (see Table I).
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FIG. 11. (a) SCCS mean absolute error with respect to experiments for the 13 molecules of the training set. (b) Comparison of SCCS solvation energies
with experimental solvation energies for the 240 molecules of the full set. In both graphs, the electrostatic parameters of the SCCS are fitted on G03 (ρmin

= 0.0001 a.u., ρmax = 0.0050 a.u.). Results in (b) are obtained with the fitg03 set of parameters (see Table I).

an ideally spherical system, for which

V ∝ S3/2, (70)

and a linear system, composed by a cylinder of length l, ter-
minated by hemispheres, and of radius equal to an average
atomic size (r = 4 a.u.), for which

V ∝ S. (71)

As a result of this almost linear behavior that reflects the
corrugation of the solvation shell, we are again left with the
freedom of choosing one of the two parameters, while per-
forming an optimal fit on the other. In an effort to simplify the
method and conform to other solvation models in the litera-
ture, we decided to choose the sum of the surface parameters
α and γ such that the volume contribution vanishes, i.e., in
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FIG. 12. Relation between the quantum surfaces and the quantum volumes
of the 240 molecules of the full set, computed using SCCS with the fitg03 set
of parameters. For comparison, the volume vs surface trends are reported for
the cases of a spherical system (in red) and of a cylindrical system terminated
by hemispheres and of fixed base radius equal to 4 a.u. (in green).

such a manner that the corresponding optimal value of β is
equal to zero. This choice corresponds to a value of α + γ

= 2.5 dyn/cm for the fitg09 set of parameters, or a value
of α + γ = 11.5 dyn/cm in the fitg03 case. Total solvation
energies for the 13-molecule training set with these choices
of parameters resulted in a MAE with respect to experimen-
tal results of about 1.6 kcal/mol (see Tables in the supple-
mentary material47). When considering the whole set of neu-
tral molecules, it is clear that the fitg03 set of parameters
presents the best trend with respect to experimental data. This
results in a better agreement with experiment for the fitg03
set compared to the fitg09, with MAEs of 1.31 kcal/mol and
1.53 kcal/mol, respectively.

Other fits were performed and tested on the full set of
molecules to check the consistency of the results along dif-
ferent combinations of parameters (see Table I). It is instruc-
tive to compare two choices of parameters that best repro-
duce the electrostatic energies computed with G03, namely,
the fitg03 and fitg03′ sets in Table I. In this case, it appears that
MAEs of comparable magnitude on the 13-molecule train-
ing set (see Figure 8) correspond to similar errors on the full
set of molecules, thus further validating the choice of the
fitting set. Moreover, it also appears that relaxing the con-
dition on the second non-electrostatic parameter β has mi-
nor effects on the overall ability of the method to repro-
duce experimental energies, with MAE improving by 0.02–
0.04 kcal/mol for two of the sets considered. In the third set
considered (fitg03), an improvement in the quality of the fit
of the order of 0.11 kcal/mol was found. Although not ex-
plicitly parametrized for it, this last set of parameters (fitg03
+ β) is also the one that better reproduces the solvation en-
ergy of water in water, with an excellent agreement with the
experimental value of −6.30 kcal/mol (see Table I). Nonethe-
less, the relative improvement in the accuracy of the results,
obtained by relaxing the condition on the β parameter, is
still marginal compared to the overall performances of the
method.
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TABLE I. Mean absolute error on the total set of molecules for different sets of parameters. For each set of parameters, the solvation energy of water in water
(experimental value of −6.30 kcal/mol) has also been reported.

�Gsol, sccs MAE MAE MAE
α + γ β H2O �Gel, g03 �Gel, g09 �Gsol, exp

Name ρmin (a.u.) ρmax (a.u.) (dyn/cm) (GPa) (kcal/mol) (kcal/mol) (kcal/mol) (kcal/mol)

fitg09 0.0001 0.0015 2.5 0.0 −5.13 . . . 0.27 1.53
fitg09+β 0.0001 0.0015 11 −0.08 −4.90 . . . 0.27 1.51
fitg03 0.0001 0.0050 11.5 0.0 −7.40 0.95 . . . 1.31
fitg03+β 0.0001 0.0050 50 −0.35 −6.29 0.95 . . . 1.20
fitg03′ 0.0003 0.0030 12 0.0 −7.55 0.90 . . . 1.32
fitg03′+β 0.0003 0.0030 20 −0.08 −7.35 0.90 . . . 1.28

Indeed, reported errors show that the proposed method is
not yet able to be used as a tool to quantitatively predict free
energies of solvation. Nonetheless, when compared with sim-
ilar computational methods, the above results are remarkable,
since they have been obtained with a model based on only
two independent parameters. In particular, while the model
of Cramer and Truhlar is able to achieve a MAE of the or-
der of 0.55 kcal/mol for solvation of neutral compounds in
aqueous solution,45 it relies on a much higher number of tun-
able parameters. Similarly, the use of more tunable methods
to describe the dispersion and repulsion contributions were
shown to improve the agreement with experiment for other
IEF-PCM based methods, with MAE of 0.58 kcal/mol and
1.01 kcal/mol reported for the COSMOtherm and the MST
methods (see Ref. 62, and references therein).

2. Errors vs functional groups

In order to better understand which physical aspects
mostly limit the accuracy of the method, the errors on sol-
vation energies, computed with the fitg03 + β parameters
have been reported in Figure 13 for all the 240 molecules

of the extended set classified according to their main func-
tional groups. The performances of the method appear to
be very good for a large set of organic molecules, includ-
ing linear and cyclic alkanes, alkenes, arenes, aldehydes,
ketones, and esters. With the noticeable exception of fluo-
rine, etheroatoms and halogens do not affect the accuracy of
the results, and compounds containing chlorine, bromine, io-
dine, mono- and di- sulfides, nitro and nitrile groups show
reasonable errors (the largest deviations being less than 1.0
kcal/mol), well within the accuracy of the best implicit sol-
vation computational methods. Considering only the above
classes of compounds, a moderate MAE of 0.46 kcal/mol is
obtained.

Instead, the performance of the method is poor for two
specific types of functional groups: amines and carboxylic
acids, that show positive (amines) and negative (acids) errors
on solvation energies of up to 4–5 kcal/mol. The acid and ba-
sic natures of these two classes of compounds are probably
the cause of large discrepancies between computed and ex-
perimental results. In particular, SCCS completely neglects
the possibility that different species of the same solute could
be in equilibrium in solution, corresponding to more or less
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compounds with more than one functional groups have not been explicitly classified. Colored rectangles have been used to identify the different classes of
compounds, with different colors reflecting the degree of accuracy of the method: green with maximum errors less than ±1.5 kcal/mol; blue for maximum
errors less than ±3.0 kcal/mol; red for sets with larger errors (up to ±6.0 kcal/mol).

Downloaded 08 Feb 2012 to 128.178.23.99. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



064102-17 Self-consistent continuum solvation J. Chem. Phys. 136, 064102 (2012)

protonation/deprotonation. Thermodynamically meaningful
solvation energies should instead be computed as a weighted
average of the solvation energy of the neutral species and that
of the protonated/deprotonated species. A refinement of the fit
to include the effects of acid-base equilibria will be the sub-
ject of further developments.

In addition to the acid/basic compounds, poor results are
obtained also for ethers, alcohols and amides. Whether this
is due to the lack of a correct description of the hydrogen
bonding environment with a continuum model is still under
study. Nonetheless, the better performance of alcohols with
respect to ethers seems to suggest that hydrogen bonding
should not be the only reason for such discrepancies. Fluo-
rine compounds, and in particular multifluorinated alcohols
and ethers, also show poor results compared to experiment.
This effect could be again due to the lack of explicit hydrogen
bonding in SCCS, that should affect fluorinated compounds
more than other halogenated molecules. Moreover, the dis-
crepancies in the computed results could be due to the dif-
ferent numerical treatment given to molecules containing flu-
orine, where higher density and wavefunction cutoffs were
used in order to compensate for the hardness of the fluorine
pseudopotentials. Eventually, alkynes and branched alkanes
show somewhat poor agreement with experiment, probably
due to the unideal description of the cavitation and repulsion
potentials.

3. Molecular dynamics simulations

In order to validate the accuracy of the proposed method
for MD simulations, a prototypical system composed of a
cyclic tetramer of deuterated water molecules has been stud-
ied, similar to what was done in Ref. 2. As reported in the
numerical details Subsection VII A, convergence of constant
energy simulations in vacuum, as reflected by total energy
conservation, is required to sensibly tighten some of the key
parameters of the simulation. When the same parameters of
the calculations in vacuum were adopted for a simulation in
the presence of continuum aqueous solution, a sensible wors-
ening of the accuracy of the method was found. This behavior
is due to a small inaccuracy in the calculation of the forces,
which has no significant effects on the geometry relaxations
of the tested molecules. Such an error could be traced back
to the use of a simplified 3-points central difference schemes
in the evaluation of the gradient of the dielectric that ap-
pears in the definition of the polarization charges (see, e.g.,
Eqs. (10) and (44)). Several alternative and more advanced
schemes can be adopted for a finite difference calculation of
such a gradient, including higher order central differences or
smooth noise-robust differentiators.63 By exploiting a num-
ber of points in the discretized space larger than three, these
schemes can produce an unphysical non-vanishing gradient in
the flat regions of space close to the solvent-vacuum interface.
Nonetheless, the more accurate description of the gradient in
the interfacial region produces interatomic forces more accu-
rate than the ones obtained by the simplest 3-points central
difference method, thus resulting in total energy conservation
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FIG. 14. Total and potential energies of a water tetramer along Born-
Oppeneimer NVE molecular dynamics trajectories, in vacuum (left panel)
and in a continuum aqueous solution (right panel). The same accuracy on
total energy conservation is found for the simulation in vacuum and in solu-
tion, when a high-order (e.g., 5-points, blue curves) central differences (CD)
scheme is exploited to compute in real space the gradient of the dielectric
function. When the simpler 3-points CD scheme (green curves) is adopted, a
small systematic error on the interatomic forces results in poor energy con-
servation along the MD simulation.

of the same quality of the simulation in vacuum (compare left
and right panels of Figure 14).

VIII. CONCLUSIONS

A revised self-consistent continuum solvation model has
been presented that overcomes most of the limitations of pre-
vious approaches and includes, in a simplified way, addi-
tional non-electrostatic contributions to solvation free ener-
gies via a combined use of the concepts of quantum volume
and quantum surface3 for isolated fragments. The model has
been implemented using a novel iterative approach that is ro-
bust, efficient, fully parallel, and convenient to implement in
electronic-structure codes, both for isolated or periodic ge-
ometries independent of the charge density representation or
the Bravais lattice chosen. Parametrization of the method to
reproduce the experimental results has been performed, and
the overall performance over an extended set of solvation free
energies in water compares favorably with the results from
reference theoretical methods of similar physical background
and more parameter intensive. The static dielectric constant of
the solvent and one parameter allow to fit the electrostatic en-
ergy provided by the PCM model with a mean absolute error
of 0.3 kcal/mol on a set of 240 neutral solutes, and two param-
eters allow to fit experimental solvation energies on the same
set with a mean absolute error of 1.3 kcal/mol. A detailed
analysis of these results, broken down along different classes
of chemical compounds, shows that most molecules display
even closer agreement, whereby larger errors are mostly lim-
ited to self-dissociating species and strong hydrogen-bond-
forming compounds. Last, a careful analysis of the effects of
numerical parameters on the predictions of the method have
been presented, to make present results fully reproducible.
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APPENDIX: EFFECT OF NUMERICAL PARAMETERS

In an effort of making the present results reproducible
and to study the accuracy of the model proposed, a careful
analysis of the effect of all other numerical and computational
parameters on solvation energies is mandatory. In fact, only a
few of these have been discussed and shown to have a negli-
gible effect on the final results. This is the case of the finite-
difference parameter � that appears in the definition of the
cavitation energy, Eq. (60), which was found to have negligi-
ble effects on the computed energies.2 For this reason, a value
of � = 0.0001 a.u. was used throughout the simulations. Sim-
ilarly, as discussed in Sec. V, the parameters entering into the
iterative algorithm to compute the polarization charges show
no significant impact on the final results.

The main parameter that enters into an ab initio cal-
culation is the size of the basis set that in the plane-wave
codes, for which the model was developed, corresponds to the
kinetic energy cutoffs of the plane waves used to represent
the wavefunctions and electronic density. The density cutoff,
in particular, corresponds to the grid size in real space used
in all the calculations of the polarization density (see Sec. V)
and, as such, it represents a crucial numerical parameter of
the model. Since the electronic density is given by the square
of the wavefunction, a cutoff on the density four times larger
than the one on the wavefunction is usually adopted. Nonethe-
less, the use of ultrasoft pseudopotentials, while allowing to
lower the plane-wave cutoffs for the description of the wave-
function, requires a much higher ratio between the two cut-
offs, with density cutoffs 8 to 10 times larger than the ones on
wavefunctions.

Convergence of the electrostatic solvation free energy
with wavefunction cutoffs for the 13 molecules of the fitting
set is reported in Figure 15. Results show a reasonably fast
convergence with respect to wavefunction cutoff: while varia-
tions on the computed energies are of the order of the kcal/mol
even for the larger cutoffs considered, solvation free energies
are well converged for wavefunction cutoffs of the order of
30 Ry. At lower cutoffs, a small subset of molecules present
errors on solvation energies of the order of 0.5–1.0 kcal/mol:
since the molecules on this subset are the ones containing
oxygen, it seems that the error is mostly related to the use
of a pseudopotential for oxygen that is harder than the ones
used for the other atomic types. The fact that changing the
solvent parameters has a negligible effect on the convergence
of the results also supports the conclusion that the solvation
calculation is independent of the choice of the wavefunction
cutoffs.

Different results are obtained for the convergence with
respect to the density cutoff, as shown in Figure 16. Con-
vergence is slightly slower than with respect to wavefunc-
tion cutoffs, with errors of the order of 0.2-0.3 kcal/mol for
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FIG. 15. Convergence of the calculations with respect to wavefunction (wfc)
cutoff. Left: convergence of total energy of molecule 013 of set (piperazine)
in vacuum and in solution (solvent parameters: ρmin = 0.0001 a.u., ρmax

= 0.001 a.u.). Note that the two curves are on top of each other on the scale
of the graph. In the inset, a closer view on the convergence of the error for
large wavefunction cutoffs is reported. Center: convergence of the absolute
error on solvation free energy �Gsol, 0 for the 13 molecules of the fitting set
(solvent parameters: ρmin = 0.0001 a.u., ρmax = 0.001 a.u.). Right: conver-
gence of the mean absolute error on solvation free energies �Gsol, 0 of the
fitting set for different values of solvent parameters. Error bars represent one
standard deviation from the average.

the normal range of this parameter (i.e., between 300 and
400 Ry). This residual error appears to be mostly related in the
first place to the sharpness of the polarization charge and po-
tentials. Moreover, the numerical details of the method could
also be crucial, as reflected by the fact that the polarization
charge density is not neutral. In particular, the calculation of
∇ ln ε[ρelec(r)] that enters into Eq. (44) is performed using
a simplified approach that involves a centered 3-points finite
difference algorithm in real space. Nonetheless, for the range
of solvent parameters investigated, the error is generally less
than 0.1 kcal/mol, thus well within the typical accuracies of
conventional continuum solvation models.

In Figure 17, the cell-size dependence of the electro-
static contribution to solvation free energies is reported, for
the 13 molecules of the fitting set, with and without cor-
rections for periodic-boundary conditions. As already men-
tioned, cell sizes were chosen to be equal to the maximum
size of the molecule optimized in vacuum, plus an adjustable
amount of 10 to 40 a.u. (denoted cell extra size in Figure 17).
Since calculations are performed for a solvent with a high di-
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FIG. 16. Convergence of the calculations with respect to density cutoff. Left:
convergence of total energy of molecule 013 of set (piperazine) in vacuum
and in solution (solvent parameters: ρmin = 0.0001 a.u., ρmax = 0.001 a.u.).
Center: convergence of the absolute error on solvation free energy �Gsol, 0

for the 13 molecules of the fitting set (solvent parameters: ρmin = 0.0001
a.u., ρmax = 0.001 a.u.). Right: convergence of the mean absolute error on
solvation free energies �Gsol, 0 of the fitting set for different values of solvent
parameters. Error bars represent one standard deviation from the average.

Downloaded 08 Feb 2012 to 128.178.23.99. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



064102-19 Self-consistent continuum solvation J. Chem. Phys. 136, 064102 (2012)

10 20 30 40
Cell Extra Size (a.u.)

-0.10

-0.08

-0.06

-0.04

-0.02

0.00

0.02
E

 -
 E

40
 a

.u
.  (

kc
al

/m
ol

)

Solvent
Vacuum
Solvent MP
Vacuum MP

10 20 30 40
Cell Extra Size (a.u.)

0.0

0.1

0.2

0.3

0.4

0.5

E
rr

or
 o

n 
Δ G

so
l,0

 (
kc

al
/m

ol
) No PBC Correction

10 20 30 40
Cell Extra Size (a.u.)

0.0

0.1

0.2

0.3

0.4

0.5

E
rr

or
 o

n 
Δ G

so
l,0

 (
kc

al
/m

ol
)

MOL 013
MOL 016
MOL 036
MOL 069
MOL 079
MOL 090
MOL 117
MOL 140
MOL 142
MOL 160
MOL 163
MOL 200
MOL 206

Makov-Payne Correction

FIG. 17. Convergence of the calculations with respect to cell extra size,
where effective cell size is defined as the maximum dimension of the
molecule plus cell extra size. Left: convergence of total energy of molecule
013 of set (piperazine) in vacuum and in solution, with no periodic bound-
ary corrections (squares) and with Makov-Payne correction (circles) applied.
Center: convergence of the absolute error on solvation free energy �Gsol, 0

for the 13 molecules of the fitting set with no periodic boundary corrections.
Right: convergence of the absolute error on solvation free energy �Gsol, 0

for the 13 molecules of the fitting set with Makov-Payne periodic boundary
correction.

electric constant, screening of solute charges makes the ef-
fects of periodic-boundary conditions relatively small. When
including corrections for periodic-boundary conditions, such
as in the Makov-Payne scheme,39 no significant variations
were found for solvation energies calculated from Eq. (69),
while large changes of the energy in vacuum appear. Thus,
the error is mostly related to the accuracy of the calcula-
tion in vacuum. Moreover, the overall error was found to be
lower than 0.1 kcal/mol for most of the molecules in the fit-
ting set, while larger errors up to 0.5 kcal/mol were found for
the molecules with larger dipole moments. When a correction
for periodic images is explicitly accounted for, convergence
is quite fast even for the smallest cell sizes considered. More
advanced and accurate periodic boundary correction schemes,
such as the density-countercharge correction,40 can be easily
extended to calculations with the SCCS, by explicitly consid-
ering the polarization charge density.

Last, the effect on solvation free energies of the ficti-
tious atomic density used to compute the electrostatic field of
nuclei and core electrons has to be taken into account (see
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FIG. 18. Convergence of the calculations with respect to atomic spreads.
Center: convergence of the absolute error on solvation free energy �Gsol, 0

for the 13 molecules of the fitting set (solvent parameters: ρmin = 0.0001
a.u., ρmax = 0.001 a.u.). Right: convergence of the mean absolute error on
solvation free energies �Gsol, 0 of the fitting set for different values of the
solvent parameters. Error bars represent one standard deviation from the av-
erage.

Figure 18). In order to study such an effect, we assumed
the nuclei to be described by Gaussians of fixed spread σ

that do not depend on the atomic type. This is a typical ap-
proximation in plane-wave codes, and the correct electrostatic
is usually recovered in the total energy by including Ewald
complementary-error-function electrostatic terms. Note that
more advanced approaches can be adopted, e.g., by defining
Gaussian spreads to depend on pseudopotential radii, or by
explicitly accounting for the core electronic density.

As explained in Sec. IV, in order for the energy of the
solvated system to be well defined, the fictitious ionic charge
density should be entirely included in the solvent exclusion
region. Such a region is directly related to the parameters
ρmin and ρmax used in the definition of the dielectric con-
stant. In particular, a high value of ρmax implies the pres-
ence of dielectric contributions close to the nuclei. As a re-
sult, for higher values of ρmax, the effect of the ionic density
becomes sensitive at lower values of σ . Nonetheless, in the
whole range of density thresholds considered we always ob-
tain well-converged results for Gaussian spreads in the win-
dow 0.3 a.u. < σ < 1.0 a.u.
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