Tutorial review on continuum embedding schemes
O. Andreussi and G. Fisicaro, “Continuum embeddings in condensed-matter simulations”,
Int. J. Quantum Chem., 119, e25725 (2018), https://doi.org/10.1002/qua.25725.
Int. J. Quantum Chem., 119, e25725 (2018), https://doi.org/10.1002/qua.25725.
References for specific models and features of Environ
F. Nattino, C. Dupont, N. Marzari, and O. Andreussi, “Functional extrapolations to tame unbound anions in density-functional theory calculations”,
J. Chem. Theory Comput., (2019), https://doi.org/10.1021/acs.jctc.9b00552.
J. Chem. Theory Comput., (2019), https://doi.org/10.1021/acs.jctc.9b00552.
N. G. Hörmann, Z. Guo, F. Ambrosio, O. Andreussi, A. Pasquarello, and N. Marzari, “Absolute band alignment at semiconductor-water interfaces using explicit and implicit descriptions for liquid water”,
Npj Comput. Mater., 5, 100 (2019), https://doi.org/10.1038/s41524-019-0238-4.
Npj Comput. Mater., 5, 100 (2019), https://doi.org/10.1038/s41524-019-0238-4.
M. Truscott, and O. Andreussi, “Field-aware interfaces in continuum solvation”,
J. Phys. Chem. B, 123, 3513 (2019), https://dx.doi.org/10.1021/acs.jpcb.9b01363.
J. Phys. Chem. B, 123, 3513 (2019), https://dx.doi.org/10.1021/acs.jpcb.9b01363.
O. Andreussi, N. Hörmann, F. Nattino, G. Fisicaro, S. Goedecker, and N. Marzari, “Solvent-aware interfaces in continuum solvation”,
J. Chem. Theory Comput., 15, 1996 (2019), http://dx.doi.org/10.1021/acs.jctc.8b01174.
J. Chem. Theory Comput., 15, 1996 (2019), http://dx.doi.org/10.1021/acs.jctc.8b01174.
F. Nattino , M. Truscott , N. Marzari , and O. Andreussi, “Continuum models of the electrochemical diffuse layer in electronic-structure calculations”,
J. Chem. Phys., 150, 041722 (2019); https://doi.org/10.1063/1.5054588.
J. Chem. Phys., 150, 041722 (2019); https://doi.org/10.1063/1.5054588.
G. Fisicaro, L. Genovese, O. Andreussi, S. Mandal, N.N. Nair, N. Marzari, and S. Goedecker, “Soft-sphere continuum solvation in electronic-structure calculations”,
J. Chem. Theory Comput., 13, 3829 (2017), https://dx.doi.org/10.1021/acs.jctc.7b00375.
J. Chem. Theory Comput., 13, 3829 (2017), https://dx.doi.org/10.1021/acs.jctc.7b00375.
G. Fisicaro, L. Genovese, O. Andreussi, N. Marzari and S. Goedecker, “A generalized Poisson and Poisson-Boltzmann solver for electrostatic environments”,
J. Chem. Phys., 144, 014103 (2016), http://dx.doi.org/10.1063/1.4939125.
J. Chem. Phys., 144, 014103 (2016), http://dx.doi.org/10.1063/1.4939125.
I. Timrov, O. Andreussi, A. Biancardi, N. Marzari and S. Baroni, “Self-consistent continuum solvation for optical absorption of complex molecular systems in solution”,
J. Chem. Phys., 142, 034111 (2015), http://dx.doi.org/10.1063/1.4905604.
J. Chem. Phys., 142, 034111 (2015), http://dx.doi.org/10.1063/1.4905604.
O. Andreussi and N. Marzari, “Electrostatics of solvated systems in periodic boundary conditions”,
Phys. Rev. B, 90, 245101 (2014), http://dx.doi.org/10.1103/PhysRevB.90.245101.
Phys. Rev. B, 90, 245101 (2014), http://dx.doi.org/10.1103/PhysRevB.90.245101.
C. Dupont, O. Andreussi and N. Marzari, “Self-consistent continuum solvation (SCCS): The case of charged systems”,
J. Chem. Phys., 139, 214110 (2013), http://dx.doi.org/10.1063/1.4832475.
J. Chem. Phys., 139, 214110 (2013), http://dx.doi.org/10.1063/1.4832475.
O. Andreussi, I. Dabo and N. Marzari, “Revised self-consistent continuum solvation in electronic structure calculations”,
J. Chem. Phys., 136, 064102 (2012), http://dx.doi.org/10.1063/1.3676407.
J. Chem. Phys., 136, 064102 (2012), http://dx.doi.org/10.1063/1.3676407.
Other references on related methods and algorithms
I. Dabo, N. Bonnet, Y. Li and N. Marzari, “Ab-initio Electrochemical Properties of Electrode Surfaces”, in Fuel Cell Science: Theory, Fundamentals and Bio-Catalysis, A. Wiecowski and J. Norskov Eds., John Wiley and Co. (2011).
I. Dabo, E. Cancès, Y. L. Li,and N. Marzari, “Towards First-principles Electrochemistry”, https://arxiv.org/abs/0901.0096 (2009).
I. Dabo, B. Kozinsky, N. E. Singh-Miller, and N. Marzari, “Electrostatics in periodic boundary conditions and real-space corrections”,
Phys. Rev. B, 77, 115139 (2008), https://doi.org/10.1103/PhysRevB.77.115139;
and Phys. Rev. B, 84, 159910(E) (2011), https://doi.org/10.1103/PhysRevB.84.159910.
Phys. Rev. B, 77, 115139 (2008), https://doi.org/10.1103/PhysRevB.77.115139;
and Phys. Rev. B, 84, 159910(E) (2011), https://doi.org/10.1103/PhysRevB.84.159910.
D. A. Scherlis, J. L. Fattebert, F. Gygi, M. Cococcioni, and N. Marzari, “A unified electrostatic and cavitation model for first-principles molecular dynamics in solution”,
J. Chem. Phys., 124, 074103 (2006), http://dx.doi.org/10.1063/1.2168456.
J. Chem. Phys., 124, 074103 (2006), http://dx.doi.org/10.1063/1.2168456.
M. Cococcioni, F. Mauri, G. Ceder, and N. Marzari, “Electronic-Enthalpy Functional for Finite Systems Under Pressure”,
Phys. Rev. Lett., 94, 145501 (2005), http://doi.org/10.1103/PhysRevLett.94.145501.
Phys. Rev. Lett., 94, 145501 (2005), http://doi.org/10.1103/PhysRevLett.94.145501.
J. L. Fattebert and F. Gygi, “First-principles molecular dynamics simulations in a continuum solvent”,
Int. J. Quantum Chem., 93, 139 (2003), http://dx.doi.org/10.1002/qua.10548.
Int. J. Quantum Chem., 93, 139 (2003), http://dx.doi.org/10.1002/qua.10548.
J. L. Fattebert and F. Gygi, “Density functional theory for efficient ab initio molecular dynamics simulation in solution”,
J. Comput. Chem., 23, 662 (2002), http://dx.doi.org/10.1002/jcc.10069.
J. Comput. Chem., 23, 662 (2002), http://dx.doi.org/10.1002/jcc.10069.